
Journal of Computational Physics 229 (2010) 5843–5856
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Kinetic theory based lattice Boltzmann equation with viscous
dissipation and pressure work for axisymmetric thermal flows

Lin Zheng, Zhaoli Guo *, Baochang Shi, Chuguang Zheng
National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
a r t i c l e i n f o

Article history:
Received 18 October 2009
Received in revised form 7 February 2010
Accepted 14 April 2010
Available online 18 April 2010

Keywords:
Lattice Boltzmann equation
Axisymmetric thermal flow
Kinetic theory
Buoyancy-driven flow
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.04.026

* Corresponding author.
E-mail address: zlguo@hust.edu.cn (Z. Guo).
a b s t r a c t

A lattice Boltzmann equation (LBE) for axisymmetric thermal flows is proposed. The model
is derived from the kinetic theory which exhibits several features that distinguish it from
other previous LBE models. First, the present thermal LBE model is derived from the con-
tinuous Boltzmann equation, which has a solid foundation and clear physical significance;
Second, the model can recover the energy equation with the viscous dissipation term and
work of pressure which are usually ignored by traditional methods and the existing ther-
mal LBE models; Finally, unlike the existing thermal LBE models, no velocity and temper-
ature gradients appear in the force terms which are easy to realize in the present model.
The model is validated by thermal flow in a pipe, thermal buoyancy-driven flow, and swirl-
ing flow in vertical cylinder by rotating the top and bottom walls. It is found that the
numerical results agreed excellently with analytical solution or other numerical results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The axisymmetric thermal flows in the axisymmetric system is of great interest in fluid mechanics [1–3]. In the last two
decades, LBE has been rapidly developed as an effective and promising numerical algorithm for computational fluid dynam-
ics [4–6], which has also been applied to axisymmetric flows [7–19]. The straightforward way for LBE to simulate such flows
is using a 3D LBE model with suitable curved boundary treatments [22–24]. Nevertheless, such approach implies the expen-
sive computational costs for this 3D simulation which does not consider any symmetrical properties of the axisymmetric
flows. Considered the properties of the axisymmetric flows, such flows can be reduced to a quasi-two-dimensional problems
in the meridian plane. Although the LBE method has achieved great success in simulating axisymmetric athermal/isothermal
fluid flows, it still has many challenges for constructing an effective and applicable axisymmetric LBE model.

In the literature, there are three categories of axisymmetric LBE models proposed for axisymmetric athermal flows [10–
16], i.e., the coordinate transformation method (CTM), the vorticity–stream method (VSM) and the double-distribution-func-
tion (DDF) method. The main idea of CTM is that it transforms the axisymmetric Navier–Stokes equations (NSE) to the spe-
cific pseudo-Cartesian forms with some additional terms in these quasi-two-dimensional NSE. The CTM was introduced by
Halliday et al. [10], who first proposed an axisymmetric D2Q9 model by adding some source terms into LBE so that it could
recover the axisymmetric NSE at the macroscopic level. However, Lee et al. [11] found that some terms are missing in this
model which would lead to large errors for simulating the constricted or expanded pipe flows. Later, Reis and Phillips [12,13]
and Zhou [14] developed similar models based on the axisymmetric NSE. On the other hand, the VSM is another version of
transformation method, it uses the relations between the vorticity, the stream function and the velocity, then the 3D
axisymmetric NSE can be transformed to the vorticity–stream-function equations. Based on the vorticity–stream-function
. All rights reserved.
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equations, Chen et al. [15] constructed a LBE model, but the model must solve a Poisson equation at each time step. It should
be mentioned that the effect of azimuthal velocity is neglected by most of the above mentioned LBE models. Recently, con-
sidered the effect of the azimuthal velocity, the DDF method is first proposed by Guo et al. [16] for simulating athermal axi-
symmetric flow from the Boltzmann equation, one is for solving the axial and radial velocity components, and the other is for
solving azimuthal velocity. This DDF method has a solid theory foundation and clear physical significance, and the main dif-
ference between Guo et al.’s model and the other existing models is that Guo et al.’s model is designed in a bottom-up fash-
ion but the other existing models are designed in a top-down fashion.

However, the aforementioned LBE models are restricted to athermal axisymmetric flows, while very few axisymmetric
LBE models proposed for axisymmetric thermal problems. To the authors’ knowledge, only four works [17–20] applied
the LBE to the axisymmetric thermal flows. These models can be classified into two categories, i.e., the hybrid approach
and the double-distribution-function (DDF) method. The hybrid method is directly applied athermal axisymmetric LBE
model to simulate the flow field, while the energy equation is solved by different numerical methods rather than solving
LBE [17,18]. The DDF method utilizes two different density distribution functions similar to the athermal DDF approach,
one is for solving the vorticity–stream-function equations or the NSE, and the other is for solving the energy equation
[19,20]. The main difference between the DDF method and the hybrid method is that the energy equation is solved by LBE.

The application of hybrid approach and DDF method for axisymmetric thermal flows encountered many challenges. The
fundamental problem with most of the hybrid LBE models [17,18] is that they directly used the athermal axisymmetric CTM
LBE models to solve the flow field, which have the complicated force terms. Furthermore, due to the complicated force terms,
the numerical instability is another critical problem for these hybrid methods, although the stability is improved by the
modified model [18]. On the other hand, although the DDF approach proposed by Chen et al. [19] has greatly improved
the numerical stability, and the complex force terms have been simplified, the model has to solve the Poisson equation at
each time step as the limitation of their athermal model. Moreover, in Ref. [20], Zheng et al. pointed out this model seems
to mismatch the energy equation at the macroscopic level, and proposed another version of DDF LBE model which can over-
come this problem, and the force terms in the model have no velocity and temperature gradients. However, it should be
pointed out that the existing axisymmetric thermal LBE models usually ignore the effect of viscous dissipation term and
work of pressure in the energy equation. Therefore, it is desirable to construct a more general axisymmetric LBE model
for axisymmetric thermal flows.

In sight of the limitations in the previous works, in this paper, we aim to propose an axisymmetric thermal LBE model
from the continuous Boltzmann equation, which could recover the energy equation with the viscous dissipation term and
work of pressure. The rest of the paper is organized as follows. In Section 2, kinetic theory of axisymmetric Boltzmann
equation is introduced. In Section 3, the axisymmetric thermal LBE model derived from the continuous Boltzmann equa-
tion, and some numerical tests of the LBE model are conducted in Section 4, and finally a brief conclusion is presented in
Section 5.

2. Kinetic theory of axisymmetric Boltzmann equation

The fully axisymmetric Boltzmann equation including an external force with the Bhatnagar–Gross–Krook (BGK) collision
operator for symmetric flows is given as
@f
@t
þ nx

@f
@x
þ nr

@f
@r
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h

r
@f
@nr
� nrnh

r
@f
@nh
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½f � f ðeqÞ�; ð1Þ
where f(x,n0, t) � f(x,r,nx,nr,nh, t) is the density distribution function of fluid molecules moving with velocity n0 = (nx,nr,nh) at
position x = (x,r) and time t in the cylindrical coordinates, a0 = (ax,ar,ah) is the external force, sf is relaxation time and f(eq) is
local Maxwellian equilibrium distribution defined by
f ðeqÞ ¼ q
ð2pRTÞ3=2 exp � jn0 � u0j2

2RT

" #
; ð2Þ
where R is gas constant, q, u0 = (ux,ur,uh) with ux, ur and uh being axial, radial and azimuthal velocity components, and T are
respectively the fluid density, velocity and temperature defined by,
q ¼
Z

f dn0; qu0 ¼
Z

n0f dn0; 3qRT ¼
Z
jn0 � u0j2f dn0; ð3Þ
As the similar procedure as Ref. [16], we introduce the following reduced distribution functions
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2
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and then Eq. (1) can be simplified to the following three equations
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where n ¼ ðnx; nrÞ; r ¼ ð@x; @rÞ; rn ¼ ð@nx ; @nr Þ; a ¼ ðax; arÞ the external force in the meridian plane, and
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From Eq. (4), the corresponding equilibrium distribution functions can be derived as following:
~f ðeqÞ ¼ q
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where u = (ux,ur) is the velocity in x–r plane. The fluid density, velocity and the total energy can be defined as
q ¼
Z
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Z

�f dn; qE ¼
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f̂ dn; ð10Þ
where E = cvT + u0/2, and cv is the specific heat coefficient at constant volume.
Through Chapman–Enskog expansion technique [25], the macroscopic axisymmetric equations can be recovered as (see

Appendix A for details)
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where l = sfp is the dynamic viscosity and k = cpsfp is the thermal conductivity with cp being the specific heat coefficient at
constant pressure.

In this LBE model, both the dynamic viscosity and thermal conductivity are related to the same relaxation time in Eq. (14).
Therefore, the ratio of the dynamic viscosity and thermal conductivity is a constant in the energy equation, which cause to a
fixed Prandlt number, Pr = cpl/k. To remove this inconvenience, we multiplied n2

0=2 on both side of Eq. (1) and rearranged the
corresponding collision operator (Xh) motivated by the idea of Guo et al. [21], which can be written as
Xh ¼ �
n2

0

2sh
ðf � f ðeqÞÞ þ Z0

shf
½ðfi � f ðeqÞ

i Þ�;
where 1/shf = 1/sh � 1/sf with sh being the relaxation time, Z0 ¼ n0 � u0 � u2
0=2. Then we could get the following evolution

equation from the axisymmetric Boltzmann equation (1) as
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where Z ¼ n � u� u2
0=2.

With this modified collision operator, the dynamic viscosity and the thermal conductivity become to l = sfp and k = cpshp
respectively, and the fixed Prandtl number problem is removed in the energy equation.
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3. Lattice Boltzmann model for axisymmetric thermal flow

In this section, we will derive the lattice Boltzmann equation from Eqs. (5), (6) and (15). With the assumption of
a0 � rn0 f � a0 � rn0 f ðeqÞ, these three reduced equations can be rewritten as
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As indicated in Ref. [16], we cannot directly construct an efficient thermal LBE model from the above equations. The simpli-
fied forms of Eqs. (16) and (17) are obtained by Ref. [16] as follows
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while for Eq. (18), we could transform it by multiplying r on both sides, and the compact form is given as
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where f ¼ r~f ; f ðeqÞ ¼ r~f ðeqÞ; F ¼ reF 0; g ¼ r2�f ; gðeqÞ ¼ r2�f ðeqÞ; G ¼ r2F 0; h ¼ rf̂ ; hðeqÞ ¼ rf̂ ðeqÞ; H ¼ rbF 0, and the fluid density,
velocity, total energy are redefined by
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Integrating Eqs. (22)–(24) along the characteristic line from time t to t + dt and using trapezoidal discretization rule, we
introduce the following new distribution functions
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and then we could obtain the evolution equation for the velocity field as [16]:
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with i = 0,1, . . . ,8, where xf = 2dt/(2sf + dt), the equilibrium distribution functions f ðeqÞ
i ; gðeqÞ

i and the forcing terms Fi and Gi

are respectively given by [16]
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where x0 = 4/9, x1–4 = 1/9 and x5–8 = 1/36 are the weight coefficients and
ci ¼ ðcix; cirÞ ¼
ð0;0Þ; i ¼ 0;
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3RT
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¼ dx=dt with dx being the lattice space and dt the time step.
For the temperature field, the evolution equation can be derived from Eq. (24), which reads
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where xh = 2dt/(2sh + dt), the equilibrium distribution function hðeqÞ
i is given as
hðeqÞ
h ¼ xirp

ci � u
RT
þ ci � u

RT

� �2
þ c2

i

2RT
� u2

RT
� 1

� �
þ Ef ðeqÞ

i ; ð35Þ
and the source term, Hi, can be decomposed into two parts, i.e., Hi = H1i + H2i, where
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with Zi ¼ ci � u� u2
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The fluid density, velocity and total energy defined by the velocity moments of the new distribution functions are given
by
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Now some remarks on the present thermal model are given as follows: First, the present thermal model is derived from
the axisymmetric Boltzmann equation, which has a solid foundation. Second, owing to the clearly kinetic background, the
viscous dissipation term and work of pressure are included by present model, which are usually neglected by the traditional
methods and the existing axisymmetric thermal LBE models. Third, the source term, Hi, given by Eqs. (36) and (37), has no
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velocity and temperature gradients which inherit the simple algorithm of LBE. Finally, in some special cases, the azimuthal
velocity uh is usually absent, therefore, the evolution equation for the azimuthal velocity can be neglected, and the external
force term, Fi, given by Eq. (32), can be simplified as
Fi ¼
ðci � uÞ � ~a

RT
f ðeqÞ
i ;
and the simplification of H1i and H2i in source term, Hi, can be given as,
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and if no external force acts on the flow, H2i can be further simplified as
H2i ¼ �urRTf ðeqÞ
i þ cir � ur

r
hðeqÞ

i :
4. Numerical tests

In this section, we will conduct some numerical tests to validate the proposed thermal model. The test problems include
the thermal flow in a pipe, and two different kinds of nontrivial thermal buoyancy-driven flows in a cylindrical enclosure,
that is, natural convection in a laterally heated and upper cooled vertical cylinder, and heat transfer of swirling flows in
cylindrical container with co-/counter-rotating walls. In our simulations, the symmetry boundary condition (SBC) [16]
and non-equilibrium extrapolation boundary treatment (NEEBT) [26] are applied to the symmetry axis and other boundaries
respectively for all cases.

4.1. Thermal flow in a pipe

The first test problem is the thermal Hagen–Poiseuille flow through a straight pipe of radius R driven by a constant exter-
nal force a = (ax,0). The computational domain is 0 6 x 6 L and 0 6 r 6 R, where r = 0 is the symmetric axis and the solid wall
is located at r = R with constant temperature Tw = 1.0. The boundary conditions for the fluid variables are as follows:
r ¼ 0 :
@/
@r
¼ 0; 8/;

r ¼ R : ux ¼ ur ¼ 0; T ¼ Tw:
Periodic boundary condition is applied to the x direction, the steady axial velocity and temperature profiles for this prob-
lem can be described as
uxðrÞ ¼ u0 1� r2

R2

� �
; ð44Þ

TðrÞ ¼ Tw þ
Pru2

0

4cv
1� r4

R4

� �
; ð45Þ
where u0 = azR
2/4m is the maximum velocity.

In the simulation, a Nr � Nx = 40 � 60 lattice is employed, and periodic boundary condition is applied to the x direction.
Fig. 1(a) compares the temperature predicted by the present LBE with the analytical solutions for Re = 2Ru0/m = 50 as Pr var-
ies from 0.2 to 4.0, while temperature profile for Pr = 0.7 with Re varying from 20 to 100 are shown in Fig. 1(b). It is shown
that the numerical results agree excellently with the analytical ones. The viscous dissipation effects are successfully captured
by the present thermal LBE model over a wide range of the values of Pr and Re numbers.

4.2. Natural convection in a vertical cylinder

Natural convection flow in a square cavity has been studied extensively by experiment and traditional numerical meth-
ods, but it is quite rare for LBE [19,20]. Unless otherwise mentioned, in the present study, the computational domain with the
aspect ratio Al = H/D = 1/2 is shown in Fig. 2, where H is the height of the vertical cylinder and D is the diameter. The bound-
ary conditions are the same as Ref. [3,19,20], that is, the bottom wall is insulated, while the lateral wall is heated with a uni-
form flux @T/@r = 1, and a uniform flux, @T/@x = �2, is used for cooling the upper wall.
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Fig. 3. Flow field (a) and isothermal lines (b) at Ra = 103.
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Fig. 4. Flow field (a) and isothermal lines (b) at Ra = 104.
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Fig. 5. Flow field (a) and isothermal lines (b) at Ra = 105.

Table 1
Comparisons of the LBE results with Refs. [3,19,20].

Ra Vmax Tmin Tmax Nut Nul

103 Ref. [3] 0.2391 �0.93 0.50 7.4604 6.6698
Ref. [19] 0.2350 – – 7.0663 6.2879
Ref. [20] 0.2397 �0.9377 0.5051 7.4927 6.6215
Ec � O(10�30) 0.2395 �0.9454 0.5005 7.5528 6.6348
Ec � O(1) 0.6036 1.2314 3.5619 1.4302 3.3226

104 Ref. [3] 0.4143 �0.69 0.30 14.5255 9.0678
Ref. [19] 0.4075 – – 14.2291 8.9658
Ref. [20] 0.4135 �0.6926 0.3075 14.7171 9.0836
Ec � O(10�30) 0.4136 �0.7051 0.2977 14.8222 9.0837
Ec � O(1) 0.5143 �0.0235 1.1250 5.4280 7.4380

105 Ref. [3] 0.4552 �0.52 0.21 24.3568 14.3750
Ref. [19] 0.4547 – – 23.9619 14.2782
Ref. [20] 0.4593 �0.5348 0.2149 24.9140 14.3837
Ec � O(10�30) 0.4594 �0.5355 0.2147 24.5256 14.3841
Ec � O(1) 0.4852 �0.1861 0.6204 12.3136 12.5339
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We first study this convection problem at the Eckert number Ec ¼ u2
r =cpDT0 being set to be less than 10�30 with ur and DT0

being respectively the reference velocity and the reference temperature difference, which means that the viscous dissipation
term and pressure work could be neglected, and the simulation is carried out on a 100 � 100 mesh at Pr = 0.7 as Ra varies
from 103 to 105. The velocity and isothermal lines predicted by present model are shown in Figs. 3–5. It is found that for low
Ra, the isotherms are slightly deformed and the highest temperature appears in the lower corner of the cylinder, and the
isotherms become much more deformed as Ra increases. All of these observations are similar to that in previous studies
[3,20]. To quantify the comparison, the maximum velocity, minimum and maximum temperature, and the average Nusselt
numbers for lateral (Nul) and top (Nut) walls are also measured and compared with the works of Refs. [3,19,20] in Table 1. It
is found that the numerical results predicted by the present model agreed well with previous studies [3,19,20].

The effect of the viscous dissipation term is also investigated by the present model with Ec � O(1). The isothermal lines
are shown in Fig. 6, and the maximum velocity, minimum and maximum temperature, and the average Nusselt numbers for
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Fig. 6. Effect of viscous dissipation on isothermal lines: left to right Ra = 103, 104 and 105.
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Fig. 7. Contour of azimuthal velocity component (a) and isothermal lines (b) at Re = 1000, Ri = 0, and s = 1.
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Fig. 8. Contour of azimuthal velocity component (a) and isothermal lines (b) at Re = 1000, Ri = 0, and s = �1.
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lateral and top walls are included in the last line for each Ra number. It is seen that the isothermal lines in Fig. 6 are quite
different from that in Figs. 3–5. In Table 1, it is found that as to the effect of the viscous dissipation term the maximum veloc-
ity and minimum temperature decrease as Ra increases, while they increase without the viscous dissipation term, implying
that the viscous dissipation term cannot be ignored in some special cases.
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Fig. 9. Contour of azimuthal velocity component (a) and isothermal lines (b) at Re = 1000, Ri = 1, and s = 1.
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Fig. 10. Contour of azimuthal velocity component (a) and isothermal lines (b) at Re = 1000, Ri = 1, and s = �1.

5852 L. Zheng et al. / Journal of Computational Physics 229 (2010) 5843–5856
4.3. Swirling flows in vertical cylinder with co-/counter-rotating walls

In this section, we will validate the proposed model by simulating swirling flows with a constant temperature gradient
in a vertical cylinder, in which the azimuthal velocity plays an important role. The flow geometry is similar to the natural
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convection flow, but the aspect ratio is 1. The flow is driven by co-/counter-rotating walls with constant angular speed Xt

and X at top and bottom wall, and the cylinder is heated from top and cooled from bottom respectively with constant tem-
peratures Th and TL (Th > TL), and the lateral wall is kept insulated.

A 200 � 100 lattice is employed in our simulation, the initial and boundary conditions are the same as Ref. [27], and the
nondimensional parameters, which characterize the swirling flow, are set as follows: Pr = 1.0, Re = 1000 (Re = XR2/m), Ri = 0,
1 (Ri = gbMT/RX2) and s = �1, 1 (s = Xt/X). The azimuthal velocity and isothermal lines predicted by present model are plot-
ted in Figs. 7–10. As shown in Figs. 7 and 8, when Ri = 0 and s = 1, the top and bottom walls are rotating in the same direction
with the same angular velocity, the azimuthal velocity and the isotherms are symmetric with respect to mid-height plane at
x = 1, while the azimuthal velocity and the isotherms are antisymmetric at Ri = 0 and s = �1. Similar phenomena are also ob-
served in Figs. 9 and 10 for Ri = 1 and s = �1, 1. It is also observed that the swirling motion is more confined in the vicinity of
the top and bottom rotating walls, and the temperature profile is a linear distribution in the center of the domain as Ri in-
creases to 1. These phenomena have been observed in Ref. [27]. For the quantitative comparison, the velocity components
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Fig. 11. Velocity profile of ur along a vertical line at r = 0.8; Re = 1000. Symbols are from Ref. [27], lines are the LBE results. Open circle and solid line, Ri = 0,
s = �1; cross and dashed line, Ri = 1.0, s = �1.
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and the temperature profiles along the vertical line at r = 0.8 are compared with the numerical results of Ref. [27] in Figs. 11–
14. It is found that the numerical results predicted by the present LBE agreed excellently with the previous work [27].
5. Conclusion

Axisymmetric thermal flows are frequently encountered in both science and engineering. Although the LBE method has
achieved great success in simulating athermal/isothermal axisymmetric fluid flows, its applications for thermal axisymmet-
ric flows are still not satisfactory. In this paper, we have proposed a thermal axisymmetric LBE model from the continuous
Boltzmann equation. In this model, the temperature field can be simulated by a D2Q9 LBE model, and the model exhibits
some distinct features that distinguish it from other previous LBE models [17–19]. First, the present thermal LBE model is
derived from the kinetic theory, which has a solid foundation and clear physical significance; Second, the viscous dissipation
term and work of pressure are naturally included by the present model, which are usually ignored in previous LBE models;
Finally, unlike these thermal LBE models, there are no velocity and temperature gradients in the force terms by the present
model.

Some numerical simulations including the thermal flow in a pipe, thermal buoyancy-driven flows, and swirling flows
have been carried out to validate the proposed LBE model. It is found that the results predicted by the present model are
in excellent agreement with analytical solutions and/or other numerical results.
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Appendix A. Derivation of the energy equation

Through the Chapman–Enskog expansion technique, we can introduce the following expansions:
~f ¼
X1
n¼0

�ðnÞ~f ðnÞ; @t ¼
X1
n¼0

�ðnÞ@tn ;
~/ ¼

X1
n¼0

�ðnÞ~/ðnÞ

�f ¼
X1
n¼0

�ðnÞ�f ðnÞ; �/ ¼
X1
n¼0

�ðnÞ�/ðnÞ; f̂ ¼
X1
n¼0

�ðnÞ f̂ ðnÞ; bU ¼X1
n¼0

�ðnÞ bUðnÞ:

With above expansions, Eqs. (5)–(7) can be written in consecutive orders of � as
�0 : ~f ð0Þ ¼ ~f ðeqÞ; �f ð0Þ ¼ �f ðeqÞ; f̂ ð0Þ ¼ f̂ ðeqÞ; ðA1Þ

�1 : Dt0
~f ð0Þ þ a � rn

~f ð0Þ þ nr

r
~f ð0Þ þ 1

r
@nr /̂

ð0Þ ¼ � 1
sf

~f ð1Þ;

Dt0
�f ð0Þ þ a � rn

�f ð0Þ þ 2nr

r
�f ð0Þ þ 1

r
@nr

�/ð0Þ ¼ � 1
sf

�f ð1Þ;

Dt0 f̂ ð0Þ þ a � rn f̂ ð0Þ � a � n~f ð0Þ � ah
�f ð0Þ þ nr

r
f̂ ð0Þ þ 1

2r
@nr
bUð0Þ ¼ � 1

sf
f̂ ð1Þ;

ðA2Þ
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�2 : @t1
~f ð0Þ þ Dt0

~f ð1Þ þ a � rn
~f ð1Þ þ nr

r
~f ð1Þ þ 1

r
@nr /̂

ð1Þ ¼ � 1
sf

~f ð2Þ;

@t1
�f ð0Þ þ Dt0

�f ð1Þ þ a � rn
~f ð1Þ þ 2nr

r
�f ð1Þ þ 1

r
@nr

�/ð1Þ ¼ � 1
sf

�f ð2Þ;

@t1 f̂ ð0Þ þ Dt0 f̂ ð1Þ þ a � rn
~f ð1Þ � a � n~f ð1Þ � ah

�f ð1Þ þ nr

r
f̂ ð1Þ þ 1

2r
@nr
bUð1Þ ¼ � 1

sf
f̂ ð2Þ;

ðA3Þ
where Dt0 ¼ @t0 þ n � r, and we found that bUðnÞ has similar properties to ~/ðnÞ and �/ðnÞ [16], which is given as
Z
@nr
bUðnÞ dn ¼ 0;

Z
na@nr

bUðnÞ dn ¼ �dra

Z bUðnÞ dn: ðA4Þ
With these properties, the axisymmetric macroscopic equations at t0 scale can be derived from Eq. (A2)
@t0qþ @aðquaÞ þ
qur

r
¼ 0; ðA5Þ

@t0ðquaÞ þ @bðquaub þ pdabÞ ¼
qu2

h

r
dar �

quaur

r
þ qaa; ðA6Þ

@t0ðquhÞ þ @bðqubuhÞ ¼ �
2quhur

r
þ qah; ðA7Þ

@t0qEþ @a½ðqEþ pÞua� þ
ðqEþ pÞur

r
¼ qu0aaa: ðA8Þ
Similarly, from Eq. (A3), the macroscopic equations at t1 scale can be obtained as follows:
@t1q ¼ 0; ðA9Þ

@t1 ðquaÞ þ @bPð1Þab þ
1
r

Pð1Þar �
dar

r

Z
~/ð1Þ dn ¼ 0; ðA10Þ

@t1 ðquhÞ þ @bQ ð1Þb þ
2
r

Q ð1Þr ¼ 0; ðA11Þ

@t1 ðqEÞ þ @bTð1Þb þ
1
r

Tð1Þr ¼ 0; ðA12Þ
where Pð1Þab ¼
R

nanb
~f ð1Þ dn; Q ð1Þb ¼

R
nb

�f ð1Þ dn; Tð1Þb ¼
R

nb f̂ ð1Þ dn.
In order to recover the macroscopic equations, the terms of Pð1Þab ; Q ð1Þb and T ð1Þb in the t1 scale equations must be estimated.

From Eqs. (A2), (A5)–(A8), these terms can be evaluated as
� 1
sf
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h i
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With the above results and coupled the t0, t1 time scales, the macroscopic axisymmetric equations can be recovered as
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where l = sfp is the dynamic viscosity and k = cpsf p is the thermal conductivity which limited to fixed Prandtl number. This
problem can be removed by introducing a modified collision operator in Eq. (7).
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